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Blood pressure and flow rate in the girafte jugular vein
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SUMMARY

Experimental measurements in the jugular veins of upright giraffes have shown that the internal pressure
is somewhat above atmospheric and increases with height above the heart. A simple model of steady
viscous flow in an inverted U-tube shows that these observations are inconsistent with a model in which
the blood vessels in the head and neck are effectively rigid and the system resembles a siphon. Instead,
the observations indicate that the veins are collapsed and have a high resistance to flow. However,
laboratory experiments with collapsible drain tubing in place of the down arm of the U-tube show internal
pressure to be exactly atmospheric and uniform with height. A model of viscous flow in a collapsible tube
with non-uniform properties is used to suggest that the observed pressure distribution may be a
consequence of the intrinsic cross-sectional area and/or compliance of the veins increasing with distance
towards the heart, or the external, tissue pressure falling. Finally, the effect of fluid inertia on steady flow
in vertical collapsible tubes with uniform intrinsic properties is analysed, and it is shown that a
phenomenon of flow limitation is theoretically possible, in which the supercritical flow in the collapsed
vein cannot return to the presumably subcritical flow in the open vena cava, even with the help of an
‘elastic jump’, if the flow rate is too large. The computed critical flow-rate, of about 80 ml s, is about
twice the flow-rate estimated to be present in the normal giraffe jugular vein. If there were circumstances
in which flow limitation occurred in the jugular veins, it would mean that the cerebral blood flow would
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be limited by downstream conditions, not directly by local requirements.

1. INTRODUCTION

The cardiovascular system of the giraffe is of interest
because of the large range of intravascular pressures
caused by the gravitational pressure gradient in an
upright animal. The mean central aortic pressure in a
4m animal is 250 mm Hg (33 kPa) (Goetz & Keen
1957) so the mean arterial pressure in the head is
75 mm Hg, and in the feet it is 400 mm Hg (53 kPa).
(Please note that all pressures quotes here are taken
relative to atmosphere.) One might ask why the
pressure generated by the heart needs to be so high, as
a higher pressure P, at the root of the aorta has at least
two disadvantages. There are both a greater tendency
to oedema in the feet, which has to be countered by
anatomical and physiological adaptations such as tight
skin and fascia in the legs (an ‘anti-gravity suit’;
Hargens et al. 1987), and greater energy demands on
the left ventricle: if the mean volume flow rate (cardiac
output) is @, the work done by the ventricle per unit
time is

W=PQ. (1)

Hence a greater muscle mass is required : heart mass is
2.3%, of body mass in giraffes, compared to about
0.59, in other mammals (Mitchell & Skinner 1993; see
also Goetz et al. 1960) with a correspondingly greater
oxygen requirement.
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Burton (1963) pointed out that, in principle, ‘it is no
harder, in the circulation, for the blood to flow uphill
than downhill” and it has consequently been suggested
that a siphon mechanism may operate in the head and
neck of upright man and, a fortiori, in the giraffe
(Badeer & Rietz 1979). By permitting flow to be
maintained without an exceptionally high left ven-
tricular or aortic pressure, this mechanism could
account for the fact that P, does not change signi-
ficantly in man with a change in posture (Burton
1965), though there is some change in the giraffe
(Goetz et al. 1960) (in both cases baroreceptor reflexes
also presumably act to moderate changes in F,). The
fact that P, in the giraffe is so much higher than in
man, however, suggests that the siphon mechanism
cannot be the whole story, and that the heart has to
pump the blood uphill to the head, for some reason.
Whether or not the siphon mechanism operates has led
to considerable controversy in the literature (Pedley
1987; Seymour & Johansen 1987; Badeer & Synolakis
1989; Hicks & Badeer 1989, 1992; Seymour et al.
1993).

One of the arguments against the siphon mechanism
is the fact that the giraffe jugular vein is normally
partly collapsed, as indicated both by direct ob-
servation (Goetz et al. 1960) and, especially, by
inference from measurements of intravascular pressure
which is positive and increasing with height above the
heart (Hargens ¢t al. 1987), not negative and decreasing
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as the gravitational gradient and the siphon concept
would lead one to expect (Pedley 1987). The measure-
ments of Hargens et al. (1987) show the internal
pressure to be about 7 mm Hg at 0.3 m above the
heart, rising to 16 mm Hg at 1.2 m above the heart. If
the vein were an uncollapsed cylinder, of diameter
2.5 cm, the measured pressure distribution would
require an absurdly high flow rate of 271s™, by
Poiseuille’s Law; the necessary increase in resistance
can be achieved only if the vessel is collapsed.
Laboratory studies using highly collapsible tubes
(Hicks & Badeer 1989) show internal pressure to be
uniformly zero i.e. atmospheric. That this is approxi-
mately true for the human jugular vein has also been
well-known for many years (Guyton 1962). The
purposes of this paper are therefore twofold: (i) to
present a firmly based theoretical framework in which
the laboratory experiments in physical models (which
we have repeated; Seymour et al. 1993) can be clearly
understood, incidentally showing that the siphon is not
a helpful analogy; and (ii) to seek a possible ex-
planation for why the pressure distribution measured
in the girafle jugular vein is not the same as in a highly
collapsible tube in the laboratory. It will become clear
that a final decision on the full explanation must await
further anatomical and physiological measurements on
giraffes. There will finally be a discussion of the
previously neglected effect of blood inertia which, it is
suggested, may lead to the phenomenon of flow
limitation, implying that in some circumstances it is
conditions in the jugular veins, not in the skull or the
heart, that may limit cerebral blood flow.

2. THEORY AND MODEL EXPERIMENTS

Following Hicks & Badeer (1992) we base the
discussion on the Poiseuille-like equation linking the
flow rate @ through a tube to the gradient in pressure
and height along the tube. In a long, straight, uniform
tube, the pressure P and height z above a given
reference level vary linearly with distance, ¥, measured

No=
nn
=~

=7
o
o/

x=0
z=0

o

Figure 1. Sketch of a tube of length L with steady flow rate
@ through it. The pressures at the two ends are P, P,; x is
distance along the tube; z is height above the left hand end.
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along the tube in the direction of flow, and their
gradients are related to the flow rate by:

d/dx(P+pgz) = —RQ, (2)

where p is the fluid density (assumed constant), g is the
gravitational acceleration, and R is the viscous re-
sistance to the flow per unit length of tube. For a
circular tube of uniform cross-sectional area A, the
resistance is given by:

R = 8mu/ A%, (3)

where u is the fluid viscosity (Caro et al. 1978). If the
tube is non-circular, equation (3) cannot be used, but
R will still increase as 4 decreases. Even if the tube is
neither straight nor uniform (figure 1), equation (2)
can still be used to relate the gradients in P and z to @
as long as the bends and the variations in resistance are
sufficiently gradual, or occupy a sufficiently short
length of tube, and as long as fluid inertia can be
neglected.

When inertia cannot be neglected, a term equal to
1/2 pu® must be added to the expression inside the
bracket of equation (2), where u = @/4 is the average
velocity of fluid in the tube. In that case equation (2)
may be called the Bernoulli-Poiseuille equation
(Badeer & Synolakis 1989). We neglect inertia in the
subsequent discussion, until at the end of the paper we
enquire into its possible effects.

If the tube of figure 1 has uniform cross-section (and
hence resistance) the pressure difference between the
ends, obtained by integrating equation (2), is given by

Py~ (Py+pgh) = LRQ, (4)

where L is the length of the tube and % is the height
of the downstream end (where P = F,) above the
upstream end (P = P,).

We now apply equation (4) to a possible experiment
on flow through an inverted U-tube (figure 2a). The
tube is rigid and of uniform cross-sectional area 4 and,
hence, uniform resistance R. One end, at level z =0, is
supplied with fluid by means of a pump which
generates pressure P, and delivers a flow rate @; the
other end enters a tank that is open to atmosphere, so
the pressure there, P, is zero, and is also at level
z = 0. The total length of the tube is taken to be L+4;
we shall pay particular attention to the pressure, P,
at a point 2 in the downflow side of the U-tube, at
height z = £ and distance L (measured along the tube)
from the entrance. Applying equation (4) twice, once
to the whole tube and once to just the first length
L, we obtain

P—Fy=(L+h)RQ (5)
b= (P+pgh) = LRQ (6)
and we recall that P, = 0. We deduce from equation

(5) that flow can occur whenever P, is positive and
then, combining equations (5) and (6), we find that

£y = WRQ—pg) = h[P/(L+h) —pg]. (7)
Thus P, will be negative, i.e. subatmospheric, unless P,
is very large, exceeding pg(L+ %). Such a system is a
siphon, characterized by a positive flow whenever P, is

positive and by subatmospheric pressure up in the arch
of the U-tube.
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Figure 2. Sketch of possible experiments with an inverted U-tube, supplied with flow rate @ by a pump at z=0
generating pressure P,. The point (2) is at height z = & and the pressure there is P,; the pumped fluid is collected in
a reservoir at level z = 0, where pressure is atmospheric, P,. (a) Complete rigid tube; P, is subatmoshperic. (6) Tube
is cut off at (2); P, is atmospheric. (¢) Tube replaced by collapsible drain tubing below (2); P, is atmospheric. (See

text for explanation).

Now consider what happens when the length /4 of
tube below the point 2 is cut off, so that the fluid (when
flowing) falls freely into the receiving tank below
(figure 25). Equation (6) still applies to the remaining
length L of the tube, but now F, is necessarily
atmospheric i.e. zero. It follows immediately that flow
is possible only if P, is greater than pgh, and when it is
the flow rate is given by equation (6) not equation (5).
Thus: (i) the pump has to push the fluid ‘uphill’ to a
height % before flow can occur; and (ii) the flow rate is
independent of the depth below point 2 at which the
receiving tank is placed. In this sense the system is
behaving like a waterfall; it is not a siphon.

Now consider a third experiment, in which the cut-
off piece of rigid tube is replaced by a length /% of highly
collapsible tube such as dialysis tubing (figure 2¢).
Once more, equation (6) determines the relation
between P,—P, and Q. The only question is, what is
P,? Here we rely on the results of an earlier laboratory
experiment, using this configuration, by Hicks &
Badeer (1989), and repeated by Seymour et al.(1993).
Hicks & Badeer measured the internal pressure at
several locations within the vertical collapsible tube,
while there was flow through it, and found it to be zero
everywhere, to within experimental error (see their
figure 3). Thus P, is zero, as in the previous example,
and it follows immediately that the system does not act
as a siphon, that 2, must exceed pgh, and that the flow-
rate, determined from equation (6), is independent of
what is happening downstream of the point 2,
including the depth of the receiving tank. In this sense
the system again resembles a waterfall; it was just such
an analogy that led Permutt et al. (1963) to coin the
phrase ‘vascular waterfall’ in the context of the
pulmonary circulation.

Of course, the fluid flowing in the collapsible tube
below the point 2 is not in free fall, otherwise it would
be accelerating, so the system is not identical to a
vertical waterfall. In fact the downflow of the fluid is
resisted by viscous forces. Hicks & Badeer (1989)
observed that the collapsible tube was uniformly
collapsed i.e. that the cross-sectional area was (to
within observational error) uniform and small; we
have made the same observation (Seymour et al. 1993).
Suppose that the cross-sectional area is A4,, and the
corresponding resistance is R,. What determines these
quantities, in the experiment? If we apply equation (4)

Phil. Trans. R. Soc. Lond. B (1996)

to the difference between the pressure P at height z and
the pressure P, at height zero, we obtain:

P+pgz—P, = zR Q. (8)

The experimental observation is that both P and P, are
zero. Hence equation (8) gives

pg = R.Q. 9)
But @ is already known, because equation (6) gives:
Q = (P—pgh) /LR, (10)

so equation (9) tells us that R, must take the particular
value pg/Q. As P, is varied, so @ will vary and R, must
vary too. Because the highly collapsible drain tube
cannot support a significant transmural pressure
difference, so that P is zero as observed, its cross section
must automatically adjust itself so that the viscous
resistance exactly balances the driving force of gravity,
whatever the flow rate.

Finally we consider a fourth model experiment, also
performed by Hicks & Badeer (1989) and repeated by
us, in which the collapsible segment of tube was turned
to lie horizontally on a flat surface at approximately
the level of point 2. According to the above theory, the
flow rate @ and the value of P, should not be affected
by this change, although the details of flow in the
collapsible segment will be affected. Hicks & Badeer
reported an increase of 129, in P, and 159%, in the
work done, but this is attributable to entry conditions
causing a change in the height of the location at which
tube collapse began i.e. part of the vertical tube was
less collapsed than the rest and therefore had lower
resistance. When this change was avoided, in our
experiments, the increase in P, was abolished.

The above discussion (we believe) clarifies the factors
determining the flow rate and pressure distribution in
the tubes which make up the simple model experi-
ments. However, a number of questions remain
unanswered. The three main ones are: (i) What is the
explanation for the observed fact that the internal
pressure in the vertical segment of collapsible tube
(figure 2¢) is everywhere zero? (ii) What has any of the
above to do with the giraffe jugular vein, and in
particular why does the internal pressure increase with
height? (iii) Is inertia negligible and what might its
effect be if not? Question (ii) is clearly the most
important one, but a previous investigation of (i) will
help set the scene for a profitable discussion.
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3. ELASTIC PROPERTIES OF COLLAPSIBLE
TUBES

Figure 3 shows a graph of the experimentally
measured transmural pressure difference (internal
pressure P minus external pressure F,) against cross-
sectional area 4 for a uniform piece of latex rubber
drain tubing (Shapiro 1977). When the transmural
pressure is positive, the tube cross-section is circular
and has low compliance (i.e. a large increase in P— P,
is needed for a given increase in 4, so the slope of the
curve is high) because, for the cross-sectional area to be
increased, the circumference of the tube must be
stretched. However, below a critical value of P—P,,
close to zero, the cross section ceases to be circular and
starts to collapse. Now the tube is extremely compliant,
because a change in cross-sectional area requires only
that the tube wall can change its curvature without an
overall circumference change, and drain tubing has
such a thin wall that bending is very easy. Only when
the tube is highly collapsed does its compliance fall
again, because then opposite sides of the tube are in
contact everywhere except for two small tunnels at the
edges, and it takes a considerable pressure difference to
close the tunnels off completely. The central region of
high compliance occupies a very narrow band of
transmural pressure values (marked ¢in figure 3), very
close to zero.

In the experiment of figure 2¢, the external pressure
P, is atmospheric i.e. zero.

1. Let us suppose first that P,, the pressure at the top
of the collapsible segment, is significantly greater than
zero. Thus the tube will be circular and its resistance
much lower than when the tube is collapsed (see point
(i) on figure 3). In this case equation (2) becomes:

dP/dx = pg—RQ, (1)

because x, the distance measured along the tube, is
directed downwards whereas z is measured upwards.

P-P,

O

A/A

Figure 3. Sketch of relation between transmural pressure
P—P, and cross-sectional area 4 (the ‘tube law’) for drain
tubing. 4, is the area at zero transmural pressure. Cross-
sectional shapes are shown at different parts of the curve. See
text for further explanation.
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The low resistance, coupled with the fact that @ is
somewhat below the value given by equation (10)
because P, in equation (6) is greater than zero, means
that dP/dx will be positive. Thus P, and hence 4, will
increase with distance down the tube, and this situation
is inconsistent with the fact that P must fall to zero at
the bottom of the collapsible tube.

2. Similarly, if P, is significantly subatmospheric
(point (ii) in figure 3), the cross-sectional area will be
tiny, the resistance very high and the flow rate greater
than the value given by (10). In this case dP/dx will be
negative, the pressure will fall further, and again this is
inconsistent with P rising to zero again at the bottom.
It follows that the transmural pressure must lie in the
narrow band ¢ of figure 3, or in other words the
internal pressure P, and hence dP/dx too, must be
everywhere close to zero. The thinner the tube wall,
and hence the flatter the middle section of the curve in
figure 3, the closer to atmospheric pressure will be the
internal pressure. This explains the experimental
observations of Hicks & Badeer (1989) and of Seymour
et al. (1993).

4. RELEVANCE TO THE GIRAFFE JUGULAR
VEINS

We must now discuss the relevance of the model
experiments with collapsible tubes to the problem of
venous return from the head of the giraffe. Various
points must be considered.

1. The rigid part of the U-tube is proposed as a
model for the carotid arteries and the intracranial
vascular system in the head, with the point 2 (figure 2)
representing the exit from the skull of all the parallel
veins there, feeding into the jugular veins. Although
the cross section is not uniform, the vessels are thought
to be distended and therefore stiff, as in figure 3: the
carotid arteries remain distended because of the high
intravascular pressure; even the veins within the skull
remain distended because the skull acts as a constant
volume chamber filled with incompressible material, so
if a vessel starts to collapse, the pressure in the space
outside it falls rapidly, preventing further collapse.
Thus the resistance of the whole system up to point 2
will remain approximately constant in time, as repre-
sented by the quantity RL in the above equations.

2. The anatomy of the venous system is not as simple
as the model suggests, for two reasons. First, there may
be alternative pathways for venous return from the
head, not just the jugulars, such as the vertebral plexus,
thought by Falk (1990) to have been an important
pathway for venous return in robust australopithecine
man, for example. Data on the vertebral plexus, and
how much flow it might take, are not available for the
giraffe. The model would be affected by the presence of
such a parallel system of venous return only if the
fraction of the flow occupying the jugulars routinely
changed with time in the upright animal, so that the
mean flow rate in the jugulars could not be assumed
constant, and if the parallel veins were prevented from
collapsing. Then this part of the system would behave
like a siphon, and very little flow would pass down the
(collapsed) jugular veins.
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Second, the neck of a giraffe contains a large volume
of tissue which is perfused by a vessel system that does
not pass through the skull. Smaller veins feed into the
jugulars all the way down their length so neither the
flow rate nor the (uncollapsed) cross-sectional area,
nor the vessel wall thickness and hence its intrinsic
compliance, need be regarded as uniform. Some of
these features are incorporated in a modified model
below.

3. In addition, there is no a prior: reason to assume
that the effective external or perivascular pressure, P,
around the jugular veins of a giraffe is uniform and
equal to atmospheric. Indeed, for the vein to be
(partly) collapsed at any level P, must be equal to or
greater than the internal pressure at that level (see
figure 4 below). Now, the skin on the neck is around
1.5 cm thick, and this could sustain a substantially
raised (or lowered) interstitial fluid pressure, F.
However, the measurements of P, by Hargens et al.
(1987) suggest a value that is approximately uniform,
and is normally close to atmospheric (average value =
1 mm Hg; maximum recorded value about 6 mm Hg,
minimum slightly negative). There must, in addition,
be a structural component of perivascular pressure
which is positive. In part this may come from solid
elements in the interstitial gel which, if unconfined,
would absorb more water and swell. There also may be
structural elements which transmit force directly from
tight skin, or muscles or tendons, to the blood vessels,
though these have not been identified. If so, such
elements could well generate a gradient in F,. Guyton
et al. (1981) estimate that the total effective peri-
vascular pressure is normally positive, by about 1 mm
Hg, in human beings, but it could well be larger in the
thick-skinned giraffe.

4. Finally, the relation between transmural pressure
and cross-sectional area in blood vessels iz situ, although
still sigmoidal, is significantly different from that for
latex tubing. Figure 4 shows the difference schema-
tically for thin-walled latex tubes (Moreno et al. 1970;
Shapiro 1977), for thin-walled veins (Moreno et al.
1970; Morris et al. 1974) and for thick-walled latex
tubes (Bertram 1987). In each case, the cross-sectional
area A is scaled by its value A4, at zero transmural

P-P, thin-walled
latex

—— -
P

~

.o
"

""""" thick-walled
latex

Figure 4. Different types of tube have different tube laws, as
indicated schematically here.
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pressure. At values of A/A, greater than 1, the latex
tubes are very much stiffer than veins, reflecting a
much larger value of the intrinsic stiffness, K, defined
in Appendix 1. In their experiments, Moreno et al.
(1970) used a thin-walled latex tube with K, = 143 Pa
and a segment of canine inferior vena cava with K, =
0.2 Pa. As A/ 4, falls to 1, there is a sharp corner in the
curve for the thin-walled latex tube and it becomes
approximately as compliant, during collapse, as the
vein. The venous curve varies much more smoothly
and the slope does not become steep until a much
larger value of A/A, is reached (Moreno et al. 1970;
Morris et al. 1974). Note that the corner for a thick-
walled latex tube occurs at a substantially negative
transmural pressure difference, reflecting the difficulty
of bending the tube wall. The presence of surrounding
tissue, for veins, is likely to act like an increase in wall
thickness, shifting the pressure-area curve downwards,
together with a moderate increase in stiffness, but
overall the change in transmural pressure per unit
change in cross-sectional area is still expected to be
more gradual than for latex tubes, especially for
positive values of transmural pressure.

The average pressure gradient down the jugular
vein is dP/dx = —0.1 mm Hg cm™, which is —13 Pa
cm™' (Hargens et al. 1987). To make quantitative
estimates we must estimate the average flow rate in
one jugular vein (at the top, say); we take it to be
@ = 40 ml s™, comparable to that in the carotid artery
(Van Citters et al. 1968; Mitchell & Skinner 1993). If
the jugular vein is uniform, then equation (11) can be
used to show that this flow rate with the measured
pressure gradient would correspond to a resistance of
R = 2.8 Pascm™. Because the viscosity of mammalian
blood is a factor of 3.9 greater than that of water,
equation (3) shows that the cross-sectional area of the
vein would, if circular, have to be 0.19 cm™2
corresponding to a diameter of 0.49 cm instead of the
2.5 cm diameter of an undeformed vein (Goetz et al.
1960). Thus the vein must indeed be severely collapsed.
(Of course, the collapsed vessel would not remain
circular, so the formula relating cross-sectional area to
resistance would be more complicated than equation
(3). A calculation based on the assumption of an
elliptic cross section with major axis equal to 2.5 cm
leads to an estimate of collapsed cross-sectional area
equal to 0.43 cm? and minor axis equal to 0.11 cm; see
Pedley (1980) for the relevant formulae.) An alterna-
tive way of looking at it is to note that, as stated in the
introduction, the pressure gradient of 2.8 Pascm™,
added to gravity, corresponds to a flow rate of 27 1s™*
in a circular tube of diameter 2.5 cm; the resting
cardiac output of a giraffe is about 40 1 min™" (Goetz et
al. 1960).

In the light of the above considerations, the previous
theoretical model, applicable to the laboratory experi-
ments on uniform thin-walled tubes, should be modi-
fied to allow for the variation with distance down the
jugular vein of: uncollapsed cross-sectional area,
effective vessel wall compliance, external pressure, and
flow rate. An appropriate description of the vessel wall
is outlined in Appendix 1.

The fluid dynamics of the blood in the vein is again
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given by equation (l1), assuming that the effect of
blood inertia is still negligible, so the observation that
P is above atmospheric at point 2, and falls uniformly
with distance down the vein (dP/dx < 0) requires that
R@ should exceed pg and should remain approximately
constant. Now @ will, if anything, increase with
distance down the vein (see point 2 above) so R will
remain constant or decrease with distance. Thus the
cross-sectional area must remain constant or increase
with distance. As explained above, this is inconsistent
with a fall in Pif P and A4 are related by the same curve,
as in figure 4, all the way down the vein, because a fall
in P would have to be accompanied by a fall in 4.
However, the variation along the vein of its elastic
properties mean that the P—A relation varies with
position, with the result that it is possible for the cross-
sectional area to remain constant or rise while the
internal pressure P is falling. Equation (1.3) from
Appendix 1 shows that:

4 dd4, 4, [dP dp,

—_ e dKD
dx dx

Fla) e

- YAy K, F(w)

]> (12)

where A, is the undistorted cross-sectional area of the
vein, K is a measure of its wall stiffness, P, is the

external pressure, o is the ratio of actual area 4 to A4,:
a = A/4,, (13)

and F(a) is a function describing the shape of the
pressure-area relation of the tube, called the ‘tube law’
(see figure 4). It follows from equation (12) that it is
possible for d4/dx to be zero or positive while dP/dx
is negative, as long as at least one of the following
conditions is satisfied (note that the factor 4,/K, F’(c)
is always positive).

1. d4,/dx > 0: as explained in point 2 above, it
seems highly likely that the undistorted cross-sectional
area of the vein will increase with distance, to
accommodate an increase in flow-rate, but more
morphological data are required.

2. dP,/dx > 0:as explained in point 3 above, this is
quite likely to be the case but there is no direct
supporting evidence, the measured interstitial fluid
pressure being uniform.

F(a)dK,/dx < 0: the function F(a) is positive
when the internal pressure exceeds the external, by
definition (see figure 4), so this condition reduces to
dK,/dx <0 i.e. the effective compliance of the vessel
wall increases with distance down it. No relevant data
are available to indicate how the compliance of the
giraffe jugular vein varies along it; such data should be
sought.

The above considerations show that a fall in internal
pressure with distance down the vein can be consistent
with the fluid dynamical requirements represented by
equation (11) as long as the intrinsic cross-sectional
area and/or compliance of the vessel increase as the
heart is approached, or the external pressure falls.
Further measurements of the properties of the giraffe
jugular vein are, however, required before we can be
certain that the above is the explanation for the
observed pressure variation in that vessel. Moreover,
the hitherto neglected effect of fluid inertia may be
important.
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5. EFFECT OF INERTIA

The word ‘inertia’ represents the fact that forces
have to be applied to accelerate pieces of matter. Thus
if a fluid is accelerated, for example because it is
passing from a wide segment of tube to a narrower one,
it must experience a favourable pressure gradient or
body force (gravity). For steady flow in a gradually
varying tube or system of tubes, inertia can be
accounted for approximately by adding an additional
term to the left hand side of equation (2), as stated
above. The equation then becomes:

d/dx [P+pgz+1/2(pu*)] = —RQ, (14)

where u = @Q/A is the average fluid velocity. We can
thus assess whether inertia is negligible in the giraffe
jugular vein by calculating the change in the quantity
1/2(pu®) as the flow goes from the uncollapsed
segment of vessel to the collapsed portion, and
comparing that to the change in gravitational pressure
over a comparable length of tube.

It was estimated above that the cross-sectional area
of the collapsed giraffe jugular vein is approximately
0.43 cm?®, just less than a tenth of the uncollapsed area.
Assuming again that the flow rate is 40 mls™, we
obtain velocities of 93 cm s (collapsed) and 8 cm s7*
(uncollapsed). Thus the change in 1/2(pu®) in going
from the uncollapsed to the collapsed state is about
430 Pa (3.2 mm Hg),the density of blood being close to
that of water (10® kg m™®). The gravitational pressure
gradient, pg, is 98 Pa per cm, so the inertial effect will
be significant if the longitudinal distance over which
collapse takes place is around 5 cm or less. If the
collapse is very gradual the inertial effect will be
insignificant. Laboratory experiments on collapsible
tubes show that collapse can occur over a very small
distance, even for a thick walled tube (Bertram 1986).
It is therefore at least possible that inertia is important.

When inertia is important the behaviour of col-
lapsible tubes can be very dramatic, and the study of
collapsible tube flow has generated a large literature
(see Shapiro 1977 and references therein; Pedley 1980;
Kamm & Pedley 1989). The most dramatic behaviour,
involving vigorous self-excited oscillations, is unlikely
to occur in a well-tethered vessel such as the jugular
vein, but there are significant effects even in steady
flow (though ‘cervical venous hum’ is frequently
observed in humans: see Danahy & Ronan (1974) and
references therein). Following Shapiro (1977), the
basic theory for a tube of uniform intrinsic properties is
outlined in Appendix 2.

Here, we briefly investigate the application of that
theory to the giraffe jugular vein. In particular we ask
whether the collapsibility of the vein can cause flow
limitation, as is known to occur in pulmonary airways
during forced expiration (Hyatt ef al. 1958). We take
the vein to have uniform properties and to be modelled
by the tube law and resistance formulae given in
Appendix 3. It is well known that, under normal
circumstances, the pressure in the superior vena cava
(SVC) is close to atmospheric and, via the tube law,
this gives a fixed downstream value, «,, for the
dimensionless cross-sectional area, o. If we take SVC
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Figure 5. Relative cross-sectional a = A/A4, plotted against
fractional distance x along the vein, as computed for three
different values of downstream area. The cases considered
are those where supercritical flow at small area develops
rapidly and an elastic jump is required to achieve the
specified downstream condition in each case.

pressure to be 1 mm Hg (130 Pa) greater than the
external pressure P,, the (uniform) tube law of
equations (1.1) and (3.1) (with »=10) gives oy =
1.39. The tube is distended and stiff, and equation
(2.2) gives the wave-speed ¢(ay) = 1.16 m s For each
relevant value of the flow-rate ¢, which we presume
would be determined by the physiological demands of
the cerebral circulation, equation (2.5) for a must be
solved subject to that downstream boundary condition.
We consider a range of values for o at the inlet (e).
Appendix 2 reveals the importance of the flow rate
@* and area o* at which both viscous resistance
balances gravity and the flow is critical (fluid speed =
speed at which pressure waves can propagate). For the
assumed parameter values, these quantities are 21.4 ml
s™' and 0.060, respectively (see figure 9 in Appendix 2).
We consider only the case @ > @*, as our estimate of
Q(40 ml s7') is greater than @*; in any case it can be
shown that smaller flow rates can be achieved without
limitation. From Appendix 2 we know that, for a
particular flow rate, the solution of equation (2.5) gives
flows which are wholly subcritical or wholly super-
critical. The flow at the downstream end is certain to
be subcritical, so if the upstream flow is supercritical,
then somewhere along the vein there must be a
transition, known as an ‘elastic jump’ (Griffiths 1971;
Oates 1975; Shapiro 1977) to return the flow to
subcritical velocity. An elastic jump is an abrupt,
spontaneous transition between sub- and supercritical
flow, analogous to a hydraulic jump (or bore) in
shallow-water channels or to a shock wave in gas
dynamics. Itis accompanied by some loss of mechanical
energy and is a way in which rapid, supercritical flows
with small cross-sectional area can adjust to higher
downstream pressure and area. The location of the
jump depends on the precise downstream boundary
condition: see figure 5. Thus it is possible to achieve the
desired downstream area either with a wholly sub-
critical flow or with an initially supercritical flow
followed by a jump. However, wholly subcritical flows
in this case involve a steadily increasing area which
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Figure 6. Relative cross-sectional area plotted schematically
against fractional distance x along the vein, for various flow-
rates @ (all greater than @*; see text) and a particular value
of downstream area «,. Here @, < @, < Q,.

does not fit the observation that the jugular vein is
collapsed in the upright position. Taking this into
account, we focus attention on ‘supercritical-jump-
subcritical’ solutions for this flow regime.

In the supercritical flow « tends to a constant
(collapsed) value ay, at which resistance balances
gravity. From equation (2.6) we can deduce that o,
is higher for larger values of . Figure 6 schematically
shows possible solution curves, of « versus distance
down the vein, for different values of flow rate @, all
leading to the required downstream area. Starting
with a value @, just bigger than @*, we see that the
area a,;,, is reached over a small distance from the inlet.
In order then to reach the required downstream area
a jump is located at a point x; along the vein. The size
of the jump is determined from conditions just
upstream by the ‘jump conditions’ given by Griffiths
(1971), Oates (1975) or Shapiro (1977). If the jump is
located before this value ¥, then the area at the outlet
would be greater than the required one, whereas a
jump located beyond x; would give a smaller outlet
area, as seen in figure 5. If the flow rate is further
increased, the value of «,;,, increases and the location of
the jump moves further downstream. Eventually a flow
rate @, is reached for which the jump has to be located
exactly at the outlet to achieve the required outlet
area. If the flow rate is increased beyond @, to @, , then
the required downstream area cannot be reached
because even if the jump occurs at the outlet, the
resulting post-jump area would be larger than re-
quired. Hence for a given downstream condition there
is a maximum possible flow rate, @, in our example.
This ‘flow limitation” phenomenon is somewhat
different from that thought to be acting in the bronchi
during forced expiration, which is a limitation on
sub-, not super-, critical flow (Elad & Kamm 1989).
Numerical solution of equation (2.5) for a range of
values of downstream area a, gives the results plotted
in figure 7. These results are sensitive to the precise
value of a4; for a, = 1.39, as estimated above, we
obtain Q, ~ 83 mls™! .

The calculated value of the maximum achievable
flow rate @, is only about twice the actual estimated
value of jugular venous flow. Given the imprecision of
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Figure 7. Plot of the computed maximum achievable flow
rates against downstream relative area, a,.
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our parameter estimates, this suggests that flow
limitation resulting from collapsible tube dynamics
could, in some circumstances, govern jugular venous
flow in the giraffe, which would then not be controlled
by upstream conditions. It would clearly be desirable
to obtain more detailed quantitative data on the
geometry and elastic properties of the vein, together
with measurements of the fluid velocity within it, as
well as extending the model to cope with longitudinal
variations of P, or of tube properties such as 4, and K
(Shapiro 1977; Elad & Kamm 1989).

Integration of the governing equation (2.5) permits
us to estimate the pressure difference between the top
and bottom of the giraffe jugular vein. The maximum
possible pressure difference, occurring when the flow is
supercritical everywhere except for the jump at the
downstream end, is predicted to be just under 2 mm
Hg (230 Pa). This is considerably lower than the
measured difference of about 9 mm Hg (1200 Pa)
(Hargens et al. 1987). Thus although the answer has
the correct sign, the model described in this section and
Appendix B does not explain all the observations. As
suggested above, it will be important to include
longitudinal variations in P,, 4, and K, to hope to
achieve quantitative accuracy.
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APPENDIX 1
Description of the pressure area relation of a non-
uniform elastic tube

Both theoretical analysis and experiment have shown
that the pressure-area relations of elastic tubes of a
variety of sizes and wall-thicknesses, but made of the
same material, can be described by the following single
equation, the ‘tube law’:

P—P, = K, F(A/4,). (1.1)

Here P is the internal pressure, P, is the external
pressure, A is the cross-sectional area, A4, is the
undistorted cross-sectional area, at zero transmural
pressure (P— P, = 0), and K is a quantity representing
the elastic properties of the material and the wall
thickness, and is called the stiffness of the tube (see
Shapiro 1977). For a homogeneous elastic material,

K, = [E/12v/ (1 =0")] (h/7), (1.2)

where £ and o are the Young’s modulus and
Poisson’s ratio of the material and #£/r is the wall
thickness-to-radius ratio of the tube when circular and
not distended. However, the effect of the surrounding
tissue in which a vessel is embedded can also be
incorporated into K, , by increasing the effective value
of k/r . Figure 4 shows (schematically) the form of the
function K, F(a), where a = A/ 4, for a typical excised
vein (Moreno et al. 1970; Morris et al. 1974) as well as
for latex tubes (Bertram 1987; Moreno et al. 1970;
Shapiro 1977). Note that K, for a thin walled latex
tube is about 30-fold bigger than for a vein of the same
wall thickness-to-radius ratio, and that the function
F(a) has a significantly different shape for the two
types of tube.

To model a tube whose properties vary with distance
along it, x, it is necessary merely to allow P,, 4, and K,
to be functions of x (it is also possible to let the function
F vary independently with x, but we ignore that
possibility here). Then, differentiating equation (1.1)
with respect to x, we obtain the following equation,
from which equation (12) in the text was deduced:

dP dP dk, 1d4 4d4,
Lo _ pg) e (o) | -SE -2 0 13
R [AO dv A2 dX]’ (13)

where F”(a) is shorthand for the function d#/da.

APPENDIX 2
Effect of inertia on steady flow in collapsible tubes

Here we revert to a tube of uniform intrinsic properties
and external pressure, in which the pressure P, cross-
sectional area 4 and velocity « are taken to vary only
with x, the longitudinal coordinate; gravity is taken to
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A(x),P(x)

gravity

u(x)

Figure 8. Sketch for the one-dimensional modelling of steady
flow in a vertical collapsible tube. Cross-sectional area 4,
pressure P and fluid velocity » depend on the longitudinal
distance «.

act in the direction of flow (see figure 8). The following
discussion is based on that of Shapiro (1977). Con-
servation of mass requires that

ud = Q, (2.1)
where @ is the flow rate. The dynamics of the fluid is

represented by the Bernoulli-Poiseuille equation (14)
which gives

o g = Y (2.2)

where the resistance R depends on 4; in a collapsing
tube, R will increase more rapidly, as 4 decreases, than
in a circular tube (see equation 3.3 in Appendix 3).
Finally the tube elastic properties are given by equation
(1.1) in which P,, 4, and K are taken to be constants.
Combining equations (2.1), (2.2) and (1.1) gives the
following expression for d4/dx, significantly different
from equation (12):

1dd _ 1gp—R(4)Q

Adx  p = (2.3)
where
= (K,/p) oaF’ (o). (2.4)

The quantity ¢® is proportional to the slope of the
pressure-area relation and represents a measure of the
stiffness of the tube at a given value of relative area o;
citself has the dimensions of a velocity, and is in fact the
speed of propagation of small amplitude pressure
waves along the vessel (Shapiro 1977; Caro et al. 1978).
For the purposes of calculation, we shall use the form
of F(a), and hence of ¢%, given in Appendix 3.

The part of equation (2.3) attributable to inertia is
the —«* term in the denominator. Following Shapiro
(1977), we introduce the speed index S = u/¢, so that,
with equation (13), equation (2.4) can be rewritten

dx/dx = [a(gp—RQ)1/[pc*(1—5)]. (2.5)
The behaviour of the flow depends crucially on the
signs of the numerator and denominator of equation
(2.5), in particular on whether § is greater than 1
(supercritical flow), less than 1 (subcritical flow) or
equal to 1 (critical flow).
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Figure 9. Plots of flow-rate @ versus relative area o for
o= o, (when pg= RQ), solid curve, and a = «, (when
speed index § = 1), broken curve.

The numerator in equation (2.5) is zero when
gravitational and resistive forces balance i.e.

gp = RQ.

For a given flow rate @ this specifies a particular value
of & which we call a;,, (cf. Shapiro 1977); when R(«)
is given by equation (3.3) this is

o= oy, = [(BmpQ)/(pgA3) 1.

Similarly the denominator in equation (2.5) is zero
when § =1, i.e. &, = a, where

gy (o) = Q;

¢(a) may be inferred from equation (3.2). The area a*
and flow-rate @* at which both (2.6) and (2.7) are
satisfied (see figure 9), i.e. oy, = oy = a*, play an
important role in the theory. Several different cases
should be considered, depending on whether @ is
greater, less than or equal to @*, and on the
dimensionless cross-sectional area o at the inlet x = 0.
The cases are discussed with reference to figure 10
which has been plotted using the functions and
constants given in Appendix 3.

1. Suppose @ > Q* (figure 104), so that a, < a,.
Then there are three possibilities: (1) oy < oy, 1.€. the
tube upstream is sufficiently severely collapsed that R¢
exceeds gp as well as .S > 1. Now da/dx will be positive,
so o increases and both u and RQ are predicted to fall.
RQ will reach pg before § reaches 1, so do/dx will
become zero and a will tend to a,;,, and stay there;
S will tend to 8, and the flow will always be
supercritical (see curves (i) on figure 10a).(ii) o, <
oy < &y i.e. RQ is less than gp at the inlet although
S > 1. Now da/dx will be negative, so the area will fall,
the velocity (and S) will rise, and R will also rise until
RQ can balance gp again i.e. a will tend to o, from

(2.6)

(2.7)

Pressure and flow in giraffe jugular vein

above (see curves (ii) on figure 104 and compare the
dialysis-tube experiment described in the text). (iii)
a, > o, 1.c. the tube is sufficiently distended for both
RQ to be less than gp and the flow to be subcritical
(§<1). Now de/dx is again positive, so the area
will increase with distance down the tube, and the flow
will become increasingly subcritical (curves (iii)). In
this case the presence of inertia has no qualitative effect
on the flow.

2. Now take @ < Q* (figure 105), so that o, < oy,
There are again three possibilities, all quite different
from those in 1. (i) &y < oy, so the tube upstream is
again sufficiently collapsed that RQ exceeds gp and
S > 1. Thus de/dx will be positive. This time, however,
S is predicted to reach the value 1 (u=¢) before
gravity and friction come into balance. Hence, from
equation (2.5), det/dx is predicted to be infinite (curves
(1) of figure 104). This is clearly impossible: no steady
flow with the given flow-rate and upstream area can
occur. Moreover, because the fluid speed exceeds the
wave speed, it is not possible for a wave to propagate
upstream and change conditions at the inlet. What
occurs instead is an elastic jump (or shock) (Griffiths
1971; Oates 1975; Shapiro 1977) in which a rapid
transition takes place to subcritical flow with a wider
cross-section and a lower velocity. (i1) oy < oy < i
(curves (ii) of figure 105). Here the tube is sufficiently
collapsed at the top end that the resistance overcomes
gravity, but not so collapsed that u exceeds ¢. Thus the
numerator of equation (2.5) will be negative and the
denominator positive, so dor/dx will be negative. The
area will therefore decrease with distance down the
tube, so R will increase further, u (= @/4) will
increase and ¢ is likely to decrease. Thus the de-
nominator 1 —S will become smaller, accelerating the
decrease in «. If the tube is long enough, 1 —§ will be
predicted to approach zero and da/dx to become
negatively infinite. That is again not possible and
steady flow with the postulated upstream conditions
cannot occur; the flow is said to be choked. This time
what happens is that a time-dependent wave prop-
agates upstream (possible, because ¢ > u) and the
incoming flow is adjusted so that choking just does not
occur: if there is a point at which .S = 1, conditions will
have adjusted themselves so that RQ = pg at the same
point. Thus, choking provides a mechanism by which
conditions in the collapsible tube determine the flow
rate upstream of it. (iil) &g > oy, 1.€. the flow at the
inlet is subcritical (S < 1) and the resistance is low.
Then da/dx will be positive, so the area increases, the
resistance decreases, and the flow becomes increasingly
subcritical. Inertia has no qualitative effect (curves
(iii) of figure 104).

3. Finally consider the special case @ = @*, in which
Uym = 0 = o*. (1) First, let oy < a*. Then equation
(2.5) gives da/dx > 0, and in fact o is predicted to
reach a* at a finite distance from the inlet. At such a
point, both numerator and denominator of (2.5) are

Figure 10. Sketches of the graphs of o (left column) and §' (right column) against normalized distance x along the
tube, in all possible cases. (1) @ > @*; (ii) @ < @*; (iii) @ = @*. Curves (a), (4), (¢) refer to different ranges of values

of @ at ¥ = 0. For full explanation see text.
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zero, which means that a smooth transition can take
place from super- to subcritical flow (curve (i) in
figure 10¢), not an abrupt one as at an elastic jump.
Once « exceeds a*, doe/dx remains positive and the
flow becomes increasingly subcritical, as also happens
if (ii) oy > a*.

APPENDIX 3

For the purpose of making specific calculations we
choose the following particular forms for the functions
relating transmural pressure, wave speed and viscous
resistance to dimensionless cross-sectional area o (see
equation 13):

Flo) = a"—a™", (3.1)
K, dF K

2 =~ﬁ—)‘3aa—;=—p—p(na”+§oc‘3’2), (3.2)
8nudy®  8mu

The exponent 7 in equation (3.1) is taken to have the
value 10 for our modelling of veins; the value n = 20,
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as used by Elad ef al. (1987), is more appropriate for
drain tubing (cf. figure 4). The form of F(a) is
continuous, yet combines the properties of being very
stiff when the tube is distended (e > 1), compliant at
intermediate e, and stiff again at very small &, where
it coincides with the form deduced theoretically by
Shapiro (1977). The function R(«) increases more
rapidly as a decreases than it would for a circular tube
(equation 3).

The values assumed for the various dimensional
parameters are:

A, =5 cm?, as estimated in the body of the paper.

K, =5 Paj this is based on equation (1.2),
but taking the ratio of wall thickness to radius and the
Young’s modulus to be somewhat larger than in the
dog (Caro ¢t al. 1978); the Poisson’s ratio, o, is 0.5 for
an incompressible material.

The interstitial pressure has been measured to be
1 mm Hg (133 Pa) at the base and top of the neck, and
this is the value assumed for P,, neglecting any
unknown ‘solid’ pressures.

The length L of the vein is taken to be 2 m.

The properties of blood are taken to be p = 10® kg

2

m™ 4 =0.004Past; g~ 10ms2
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